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Summary

This chapter introduces methods to synthesize experimental results from independent
high-throughput genomic experiments, with a focus on adaptation of traditional methods from
systematic review of clinical trials and epidemiological studies. First, it reviews methods for
identifying, acquiring, and preparing individual patient data for meta-analysis. It then reviews
methodology for synthesizing results across studies and assessing heterogeneity, first through
outlining of methods and then through a step-by-step case study in identifying genes associated
with survival in high-grade serous ovarian cancer.
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1. Introduction

This chapter introduces methods to synthesize experimental results from independent
high-throughput genomic experiments, with a focus on adaptation of traditional methods from
systematic review of clinical trials and epidemiological studies. We focus on differential gene
expression because the public availability of data from gene expression microarrays far
surpasses any other genomic assay; however, these methods are flexible and applicable to
other genomic data types and study objectives.

The traditional systematic review and meta-analysis attempts to resolve inconsistency
and uncertainty in a literature of, for example, clinical trials on effectiveness of a treatment or
observational studies of association between a risk factor and health outcome. The analysis is
of association between the outcome of interest and a single exposure or treatment. Great care
must be taken in this situation to select and studies and exclude incomparable studies in order
to avoid bias in the analysis, for example by adherence to the PRISMA guidelines [1].
Systematic review and meta-analysis has been well described in the primary literature, reviews
[2, 3], and monographs [4, 5]. Although the methodology we summarize in this chapter is
substantially similar, the setting presents different challenges and priorities.

Unlike traditional studies of a single exposure or treatment, in this setting thousands of
variables are observed - one per gene or transcript. Association measures, most commonly
differential expression of each transcript, are almost never consistently reported, and instead
must be calculated for each study using Individual Patient Data (IPD). Itis hard to envision that
synthesized results could be affected by inadvertent bias of the meta-analyst, but different
challenges are present. The bioinformatic challenges can be substantial: locating and
standardizing raw gene expression data and clinical data, handling large datasets, and
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repeating and interpreting thousands of meta-analyses. This chapter provides advice and
recommends approaches for dealing with these challenges, and reviews relevant methods from
traditional meta-analysis. Using straightforward and statistically well-established methods,
meta-analysis makes it possible to overcome some of the limitations of high-dimensionality and
batch effects that are inherent to high-throughput biology, and to develop extremely robust
biomarkers.

2. Materials

2.1. Microarray dataset identification

If high coverage of available data is important, the most thorough approach to dataset
identification is systematic literature review. Starting points for search terms of Pubmed for
numerous cancer types are provided in the GeneSigDB database [6]. However the large
majority of publicly available gene expression data are re-distributed through the Gene
Expression Omnibus (GEO) [7] or ArrayExpress [8], and data from these resources is
significantly easier to access and is more stably available than data from the websites of
authors or their institutions. Other alternatives providing greater curation but much lower
coverage are InSilicoDB [9], Oncomine [10], and Bioconductor (BiocViews: ExperimentData,
RNAExpressionData).

2.1.1. The Gene Expression Omnibus
Experiments in GEO are represented by Series (GSE codes), which are occasionally curated
as Datasets (GDS codes). Series may be composed of a single platform (GPL) or multiple
platform. Platforms (GPL) annotate platform-specific identifiers and usually provide maps to
standard genes identifiers. However it should be noted that the GPL annotations are generally
author-provided and unstandardized, so different platforms provide different annotations or the
same annotations based on different genome builds, and can even contain
spreadsheet-introduced gene symbol errors [11]. When possible, it is safer to use annotations
from Bioconductor [12] .db packages (BiocViews term AnnotationData) or from BioMart [13].
When manufacturer-specific annotations are not available, Bioconductor or Biomart can still be
used to map stable identifiers such as Entrez Gene or Refseq to other annotations, rather than
using unstable and potentially outdated identifiers, such as gene symbols, directly from the GPL
annotations.

GEO is well-supported in Bioconductor by the GEOmetadb package [14] for searching
meta-data and the GEOquery package [15] for downloading expression and platform data.

2.2. Dataset preparation

Whereas meta-analysis for clinical trials and observational studies in epidemiology is often
possible using published summary statistics and confidence intervals, thousands of rows of
summary statistics are required in meta-analysis. Normally these must be calculated from
Individual Patient Data (IPD) after appropriate standardizing steps. This section first describes
steps to prepare datasets for the calculation of summary statistics appropriate for meta-analysis
in ways that reduce the impact of unwanted technical variability between studies. However, we
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note that some amount of heterogeneity between datasets is inevitable, arising both from
experimental settings and from differences in patient recruitment and treatment. Heterogeneity
should not be viewed as an enemy of the meta-analyst. The existence of heterogeneity
provides rationale for using meta-analysis to identify robust genomic signals present
independently of the heterogeneity, and to investigate the impact of heterogeneity on identified
genome / patient associations.

2.2.1. Curation

Individual-patient metadata must be standardized across studies, including variable names and
the values they take. This process is error-prone and it can be difficult to catch mistakes later in
high-throughput analysis, therefore a template-based syntax checking recommendable. For
example the curatedOvarianData package [16] published an R script for template-based
curation and regular expression checking in R, the InSilicoDB web service [9] provides a
graphical interface to curation.

2.2.2. Preprocessing

The application of different microarray pre-processing algorithms may introduce technical
heterogeneity. Although in our experience (for example [17, 18]) even different microarray
platforms do not necessarily contribute significant heterogeneity, when the analystis in a
position to pre-process raw data, certain pre-processing approaches will reduce the potential for
heterogeneity. Common normalization and probe set summarization methods such as Robust
Multi-array Average [19] use multiple arrays to estimate probe effects, and heterogeneity may
be introduced by processing datasets separately and therefore using different estimates of
probe effects for each dataset. One approach to avoiding these differences is to preprocess all
datasets together, using a low-memory function such as justRMA from the Affymetrix
Bioconductor [12] package. For supported platforms, the frozen RMA method [20] uses a
frozen reference database of thousands of publicly available raw data files, and eliminates
differences in estimated probe set effects across datasets. We emphasize, however, that it is
also reasonable to use data already pre-processed by different algorithms, and assess the
amount of heterogeneity post-hoc using the |12 or Cochrane’s Q statistic.

When different technological platforms used prevent application of comparable
pre-processing methods across all studies, a next-best approach is to scale the observations for
each gene (or row) to z-scores, by subtracting the mean and dividing by the standard deviation.
This should be done after ensuring that any dataset-wide variance-stabilizing transformation,
such as the log-transform, has been applied consistently in all or none of the datasets. Scaling
to each variable in each dataset to unit variance ensures that fold-change or other effect-size
estimates are comparable across studies, which may be adequate when synthesizing results
obtained from comparable but different measurement technologies.

2.2.3. Batch effects

Anyone familiar with the problems that batch effects can cause for single studies [21, 22]will be
concerned about the potential for batch effects to impact a meta-analysis. Using traditional
methods of assessing heterogeneity, one can identify the extent to which heterogeneity
between datasets is impacting a meta-analysis, and identify which datasets are most
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responsible for the heterogeneity. One can establish whether the amount of heterogeneity
warrants the potentially large amount of effort required to identify and correct for batch effects in
individual studies, and if so whether batch correction actually helps. may be surprised to find
that batch effects in some cases have limited practical effect on a meta-analysis.

2.2.4. Gene collapsing

A basic requirement of in gene expression meta-analysis that each study contain overlapping
sets of measurements. If all studies used the same technological platform, it is possible to
perform meta-analysis either using manufacturer-specific probe set identifiers, or gene-level
summaries. To synthesize analysis across different platforms, however, it is necessary to map
and summarize manufacturer-specific probe set identifiers to standard identifiers such as Entrez
Gene or gene symbols. Miller et al [23] discuss and compare alternatives for merging probe set
level data to gene level. We highlight one additional consideration for meta-analysis, that when
using an approach that selects a single representative probe set per gene, it is preferable to
select the same probe set for each study in the meta-analysis. For example, Ganzfried and
Riester et al. [16] selected for each gene the representative probe set with maximum mean
across all studies of a common platform. Approaches which do not use the dataset at hand for
probe set selection, such as Jetset [24] or BrainArray [25], also avoid introducing heterogeneity
that can arise from representing a gene by different probe sets in each dataset.

2.2.5. Pathway or gene set collapsing

While pathway or gene set approaches are routinely used to test for enrichments in gene
rankings, for example via cutoff-free methods such as GSEA [26] or via methods for analysing
gene lists such as implemented the DAVID webservice [27], the value of collapsing features to
pathways is appreciated only recently. The idea of these approaches is to calculate for each
sample and pathway (or gene set) a single pathway activation score, utilizing the expression
values of all measured genes in this pathway. The gene-by-samples expression matrix is
transformed into a pathway-by-samples expression matrix. Such a pathway activation score
calculation is a potential noise reduction step and can be used to more robustly compare
expression data across very different assays, for example even when the data was obtained
from different species [28].

The first step is selecting appropriate gene sets for the problem at hand. A commonly used
resource is MSigDB [26], which provides curated sets of genes in different categories, for
example canonical pathways such as KEGG [29] or REACTOME [30, 31], downstream targets
of gene regulators such as transcription factors or miRNAs, or genes associated with gene
ontology (GO) terms [32]. The expected expression direction (“‘up” vs. “down”) of genes within a
set of genes representing an active pathway provides important information and high activity of
both up- and down-regulated genes may cancel each other out. It is thus recommended to split
pathways into up- and down-regulated gene sets when this information is available [33]. Final
pathway scores can be calculated by subtracting the activation scores of down-regulated genes
from the ones of the up-regulated activation scores.
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Various methods for collapsing genes to gene sets have been proposed [34], most notably
ssGSEA [35] or GSVA [33]. Since these methods need to distinguish, for all genes in the gene
sets, activated or inhibited gene expression from normal expression levels, these methods work
better the larger the dataset is [33]. This limitation could be in theory avoided when the future
methods support platform-specific databases of gene expression ranges, as for example utilized
in the fRMA approach [20] discussed in the “Preprocessing” section. In a meta-analysis setting,
gene set collapsing methods have been used for example to robustly classify samples by
subtype [36] or comparing in vivo, in vitro and murine data [37].

2.2.6. Duplicate checking

The methods discussed here assume independence of studies and samples. This assumption
can be violated by re-use of clinical tissue specimens by a research group in subsequent
studies, or sharing of specimens between different research groups and in consortial studies.
We developed the doppelgangR R package (https://github.com/lwaldron/doppelgangr) to
facilitate identification of duplicates from gene expression profiles. Duplicates may also be
identified by patient identifiers and inspection of published papers, and subsequent papers by
the same research group deserve extra attention to duplicate-checking.

2.2.7. Gene pre-filtering

Once the data for all studies has been preprocessed so that features (probe sets, genes,
pathway activation scores etc.) are comparable across studies, it is further advisable to
investigate whether the features indeed measure the same biological signal, especially when
data was obtained from different platforms. The integrative correlation technique proposed by
[38] can be used to select “reproducible” genes. The basic idea behind this approach is that
genes should be co-expressed with the same set of other genes across platforms and studies.
Therefore, the correlation in expression of a given gene G is calculated between G and every
other gene in a study, i.e., to identify the “neighborhood” of G. If this “neighborhood” is very
different across datasets, the average correlation of correlation profiles across all pair of studies
would be low; only if the average correlation of correlations exceeds a certain threshold, gene G
is thus called reproducible and is included in the meta-analysis.

3. Methods

Although several methods have been proposed for meta-analysis of gene expression
microarrays, traditional methods developed for synthesis of clinical trials and epidemiological
studies remain highly relevant and are the most well-understood and implemented. Several
implementations are available in the R environment, but our favorite for maturity and
documentation is Metafor [39]. We refer to discussion therein for references to alternative
software packages. The classic methods of fixed and random-effects synthesis are simply be
applied for each gene or feature, with the main challenge being repetition of the methods for
thousands of rows of a gene expression matrix, and summary and interpretation of thousands of
results.
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3.1. Fixed effects meta-analysis
Here we summarize the methods described by DerSimonian and Laird [2] for synthesis of effect
size estimates across studies. Although their paper is concerned with risk ratio or risk difference
in case-control studies, the methods are applicable to the synthesis of other statistics or effect
sizes as long as they are accompanied by a standard error for each study. These methods are
parametric in that a distribution of effect sizes across studies is assumed: constant in the fixed
effects model, or normal in the random effects model. Let 0, be a per-gene estimate of interest
that is assumed to normally distributed, such as log fold-change for differential expression from
a Limma analysis [40] or log hazard ratio in a univariate Cox proportional hazards model, where
i indexes each independent study, i=1, ..., K. It can represent the coefficient of a gene in a
generalized linear model with non-normally distributed residuals and linear or non-linear link
function, or a simple differential expression analysis. The coefficient can be corrected for clinical
covariates in a multivariate regression model. What matters is that the method produces the
estimates of interest, and accompanying standard errors, for each genomic feature in each
study.

The fixed-effects model is developed under the assumption of one true effect size, with
differences between studies attributed to individual-level sampling variation, i.e.:

0; =6 (1)

where 0 is the common true effect size. Under a fixed-effects model, the synthesized estimate,
éF, is a weighted average of estimates from each study:

K .
Z w;t;
i=1

= =
57

These weights are commonly taken to be the inverse squared standard error of the effect
estimates from each study:

w==1 (3)
The standard error of the fixed-effects estimate is the inverse mean of the study-specific
weights:

1

_
Q 52"

Equations (2-4) are sufficient to calculate a fixed-effects meta-analytical estimate of log
fold-change, log hazard ratio, etc. We note that some software and R functions produce
confidence intervals rather than standard errors; these are converted to standard error in the
standard way, for example to convert a 95% interval to Standard Error:

S.E.(0F) =

95% 95%
SE — C"‘r'upprr - C'I'l'uu'rr

a 2 % 1.96 (5)
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Although this calculation can be performed by meta-analysis packages such as metafor, we
present it to highlight the simplicity of the model used and to distinguish it from the a
random-effects model.

3.2. Random effects meta-analysis

Under the random-effects model, the synthesized estimate is given by equation 2 but with
altered weights:

* - ~ 2 ~ 2
w; = 1/(7"+07) 4

where 72 is a heterogeneity parameter and standard output of meta-analysis software,

2is

estimated from the data, and c?l? are the variances of each study’s effect size estimate 6,. As 72

— 0 (no heterogeneity) the random-effects solution converges to the fixed-effects solutions, and
that as v> —« (very large heterogeneity) the random-effects solution is a simple average of the
per-study effects, regardless of sample sizes or standard errors of each study. The null
hypothesis of no heterogeneity (v? = 0) can be tested by the Cochrane’s Q statistic, which is just
the summed product of study weights by squared residuals of per-study effect sizes from the

fixed-effects estimate:
N

Q= Zu"i(éf —6p)?
i=1 (7)

The Q statistic is %, , distributed under the null hypothesis of no true between-study
heterogeneity in effect sizes (e.g. as in Equation (1) ), and is a standard test of heterogeneity. 7
can be understood as an estimate of total amount of heterogeneity present, in the same units as
variance of the effect size. Another commonly reported measure of heterogeneity is I
~9
72
P=—"3—
T+ Utypfcni , (8)
where nypiw,is the “typical” single-study variance in effect size estimate. |> can be understood

as fraction of total variability in the estimate of a single study’s effect size that is due to
heterogeneity.

In performing meta-analysis for thousands of gene expression features, these estimates
are produced for each feature. A global picture of heterogeneity can be developed from
histograms of 1%, ¥, and Cochrane’s Q-test p-values. Some features will exhibit more
heterogeneity than others, and one can consider whether heterogeneity is likely technical or
biological. For example, features can be ranked by evidence of heterogeneity, and gene set
analysis can be performed on the basis of this ranking.

3.3. Fixed vs. random effects meta-analysis

It is important to understand heterogeneity in the data. In the context of gene expression
meta-analysis, a fixed-effects meta-analysis will identify the genes with strongest effect in the
studies used as training data, while a random-effects model attempts to identify the genes with
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strongest average effect in a hypothetical population of studies. While the latter is theoretically
preferable, it might not be optimal if, for example a source of heterogeneity is not expected to
occur again in future data. For example, different microarray platforms might measure particular
transcripts with different accuracy. If heterogeneity is due to technical issues in a single study or
platform, then a random-effects analysis might remove genes with strong effect from a ranked
list, because the random-effects model may unnecessarily down-weigh a useful predictor as a
result of a problematic study or platform. In this context it is difficult to a priori decide whether
fixed- or random-effects will work better. A sound approach is to try both, compare them, try to
identify and understand the sources of heterogeneity, and choose the simpler approach if
results are very similar.

3.4. Rank-based meta-analysis

The rank products method [41] was developed in the early days of microarray data analysis for
identifying differentially expressed genes. Datasets in this era were typically small and noisy,
which made a method free of distributional assumptions particularly useful. The method was
soon extended for meta-analyses [42], and became a popular choice for microarray
meta-analyses, mainly because of its simplicity, shown robustness [43], and for its more
straightforward support for expression direction (“up” vs. “down”), compared to other simple and
then commonly used methods such as synthesizing p-values via Fisher’s or Stouffer's method.
Since rank products weighs datasets by sample size, the results are in general expected to be
more similar to a fixed-effects than to a random-effects meta-analysis [17]. A major practical
disadvantage of the method, the computational cost of the permutation tests required to
estimate the rank product statistic, was recently mitigated by the implementation of a fast
approximation [44]. Rank products can give very different results compared to marginal tests for
example when genes are highly correlated, clustered in so-called gene modules, since it breaks
ties randomly. This will add random noise to the ranks of large gene modules, thus lowering
their significance. This can be an advantage when final lists of differentially expressed genes
comprise only highly correlated genes after adjusting for multiple testing.

3.5. Other approaches to synthesis

Several other methods have been frequently used in the literature, and we refer to the excellent
review by Tseng et al. [45] for a comprehensive overview of those. These methods include “vote
counting” approaches, probabilistic combining of p-values from different studies, and merging
studies during data pre-processing. Vote counting approaches, where genes are considered
significant or validated when they reach a p-value cutoff in a minimum number of datasets, are
statistically inefficient but popular due to their simplicity. Combining p-values requires only
minimal information about studies and is frequently used for example when estimating standard
errors of effect sizes is not possible. For an overview and recent improvements in this class of
methods, see [46]. Direct merging of datasets will create batch effects, and any imbalance of
the outcome of interest between datasets will result in confounding with these batch effects.
This method should only be used when transcriptome differences between datasets is be
expected to be larger than batch effects, and the meta-analysis approach described above is
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infeasible due to extreme imbalance between datasets, and confounding is unavoidable. When
broad transcriptome modeling occurs between cases and controls, such as between oral
squamous cell carcinoma and normal tissue [47], such merging of datasets can be acceptable
even when datasets are unbalanced in case/control prevalence.

3.6. Case Study

In this section we work through a case study in identifying differentially expressed genes and
assessing the extent and potential sources of heterogeneity. We focus on identifying genes
associated with overall survival in ovarian cancer, using the curatedOvarianData Bioconductor
package [16]. Full code and output for performing the analysis in this section are available from
http://lwaldron.qgithub.io/GeneExpressionMetaAnalysis/.

Although our original meta-analysis using the curatedOvarianData database was limited to
late-stage, high-grade, serous ovarian cancer, here we include all patients for which overall
survival is known, to demonstrate investigation of sources of heterogeneity. This analysis
follows the basic steps:

1. Scale all genes to unit variance. In analyses where large numbers of samples are
removed from a study, it is preferable to do scaling with the full number of samples.
Scaling is critical when studies use different microarray platforms, so that coefficients
have the same scale when synthesizing across studies.

2. Apply inclusion and exclusion criteria: microarray studies of primary tumors only, studies
with at least 40 patients and 15 deaths, including only patients where censored overall
survival is known.

3. Remove duplicate samples and studies that are subsets of another study. Steps 2 and 3
reduce the database from 30 studies and 4,411 samples to 15 studies and 2,271
samples. With a curated database, these steps are performed automatically and can
include Regular Expression filters on patient meta-data.

4. Restrict analysis to genes available on every platform. This is not necessary, but was a
convenience for this analysis.

5. Perform meta-analysis for each gene, using both a random-effects and a fixed-effects
model. In this example we fit a univariate Cox Proportional Hazards model and use the
coefficient of the continuous gene expression variable for synthesis.

At this stage we can assess the presence of heterogeneity by plotting a histogram of p-values
from Cochrane’s Q-test (Figure 1) for each gene. In the absence of any heterogeneity, these
p-values would be uniformly distributed between 0 and 1. However we observe that many
genes exhibit some heterogeneity across studies in association with with overall survival. We
then identify NUAK1 as the gene with strongest evidence of prognostic association with overall
survival (Figure 2). This gene exhibits no evidence of heterogeneity, with a non-significant
Cochrane’s Q test and identical synthesized log hazard ratios by fixed or random-effects
meta-analysis. We identify KALRN as the gene with greatest evidence for heterogeneity in log
hazard ratio (Figure 3), with the proportion of patients whose tumors were suboptimally
debulked being one likely source of this heterogeneity (Figure 4). Overall, although some global
evidence of heterogeneity exists, its impact on the synthesized estimate even of the gene
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exhibiting greatest heterogeneity (KALRN) is not large, with the random-effects estimate
differing from the fixed-effects mainly in having a somewhat larger confidence interval. This is
consistent with recent independent analysis using newly proposed methods for identifying
homogeneous and heterogeneous variables in pooled cohort studies that found none of 15
genes with known prognostic significance exhibited significant heterogeneity in prognostic
association in the curatedOvarianData database [48].

Figure 1: Assessing heterogeneity of all genes by Cochrane’s Q-test. The test was
performed for all genes that present in every study, with p-values obtained from output of the
rma.uni() function from the metafor library. In the absence of any heterogeneity a uniform
distribution of p-values between 0 and 1 would be observed; this histogram indicates evidence
of heterogeneity since small p-values are more frequent than larger p-values. This does not
however imply that the magnitude of the heterogeneity is large, or that differentially-expressed
genes identified are invalid.

Figure 2: Forest plot for the gene with the strongest evidence of association with overall
survival in ovarian cancer. This gene, NUAK1, is the top-ranked gene according to
synthesized p-values by both fixed and random-effects meta-analysis; in fact, it shows no
evidence of heterogeneity and the synthesized estimates. Fifteen rows with study names on the
left show the log Hazard Ratio of a Cox Proportional Hazards model for each study, with the
point estimate and 95% confidence interval, with box sizes proportional to the inverse square of
the standard error of each study (or roughly to the number of deaths). The right-hand column
provides the numeric point estimate and confidence interval. Two diamonds at the bottom show
the point estimate and 95% confidence interval of the synthesized log Hazard Ratio by fixed and
random-effects estimate, which are identical. In other words, the study-to-study variation seen
here is consistent with homogeneous studies and sampling variation only at the level of
individual patients.

Figure 3: Forest plot for KALRN, which demonstrates the strongest evidence of
heterogeneity between studies. The p-value from Cochrane’s Q-test is marginally significant
after Bonferroni correction (FWER = 0.06). Heterogeneity is apparent as studies with both
significantly positive and negative Cox coefficients are observed. Note however that the
synthesized point estimates are similar by fixed and random effects, but the standard error and
confidence interval are smaller in the fixed-effects model.

Figure 4: Association between log Hazard Ratio and percentage of suboptimally
debulked patients. Six covariates with prognostic relevance were considered as potential
sources of heterogeneity between studies: suboptimal debulking of tumors, tumor histology,
grade (high/low), stage (early/late), and age (greater or less than 70 years). For each of these
covariates, a linear regression was performed between per-study covariate prevalence and
per-study Cox coefficient (log Hazard Ratio), with points weighted by study size. Only the
prevalence of suboptimal debulking was significantly associated with Cox coefficient (P=0.006).
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The area of data points is proportional to study sample size and weighting in the linear
regression. Higher proportions of suboptimally debulked patients are associated with greater
association between KARLN expression and survival; in other words, KARLN is more strongly
associated with bad prognosis in studies with more suboptimally debulked patients.

3.7. Extensions to predictive modeling

The most likely objectives of meta-analysis are to identify candidate differentially expressed
genes, or to develop and validate a predictive model. The former objective has been reviewed
also by [49]; the latter is a more recent application of genomic meta-analysis that has not to our
knowledge been reviewed. Bernau et al. [50] recently proposed leave-one-dataset-in
cross-study validation for validating of prediction models and comparing prediction algorithms
using a collection of independent studies. In this approach, each dataset is used in turn for
model training, and all other datasets for validation. The resulting matrix of independent
validation statistics is analyzed for evidence of outlying studies, and for estimation of
cross-study validation accuracy. Although this method is very useful for comparing algorithms
and identifying outlying studies, a more accurate model can be developed using all available
studies for training. Riester et al. [17] proposed a related leave-one-dataset-out
cross-validation, whereby each study is used in turn for validation and the remaining n-1 studies
are used for training. Log fold-change or Cox regression coefficients are synthesized across the
training studies by meta-analysis as described in this chapter, and synthesized coefficients are
directly used as the coefficients of a linear prediction score.

4. Notes

Meta-analysis of genomic datasets, even using basic statistical methods adapted from unrelated
fields, is a powerful tool for overcoming dimensionality and batch effects to develop robust
biomarkers and prediction rules. Specialized statistical methodologies are still needed, for
example, for aggregating evidence of heterogeneity across all gene expression measurements
and appropriately re-weighting studies by their concordance with other studies, and for missing
data imputation that leverages independent datasets. The most significant barriers to successful
use of genomic meta-analysis are public availability of data and annotations, and the tedious
work of standardizing datasets from disparate sources to enable straightforward analysis of
individual patient data. As RNA sequencing catches up with and potentially overtakes
microarray technology as the dominant method of transcriptome profiling, the necessity of
patient privacy presents new challenges for the open sharing of data that makes meta-analysis
possible. We hope that the methods outlined in this chapter, and the successes of recent gene
expression meta-analyses, will help provide the necessary motivation for researchers, journal
editors, reviewers, and funding agencies to continue the tradition of open data sharing that was
developed for the microarray.
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